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Abstract

The occupation time of an age-dependent branching particle system is considered, where the

particles are subject to random migration, random lifetimes and branching. Under the usual

independence assumptions in branching processes, we give a characterization of the occupation

time of such branching system by means of its transition Laplace functional. In the case of

finite variance branching (and large mobility of individuals), a large time limit theorem for the

occupation time process is obtained.

1 Introduction and background

Consider a branching population in the d-dimensional Euclidean space Rd, evolving in the following

fashion. Any given individual develops a Markovian migration during its lifetime τ , where τ is a

random variable having a continuous density f , and at the end of its life it branches, leaving behind

a population consisting of ζ ∈ {0, 1, . . .} individuals, all appearing at their mother’s death position

and evolving independently in the same way as their progenitor.

When τ has an exponential distribution it is well known that, under the customary independence

assumptions, the resulting stochastic process {X(t), t ≥ 0}, is a Markov process, where, for each

t ≥ 0, X(t) denotes the simple counting measure on Rd whose atoms are the positions of particles

alive at time t. In the literature there is a lot of work about this Markovian model. Our main

objective here is to investigate the case when τ is not necessarily an exponential random variable,

in which case {X(t), t ≥ 0} is no longer a Markov process. In order to get a Markov process out

of this model, Kaj and Sagitov [14] and Fleischmann, Vatutin and Wakolbinger [9] extended the

population’s phase space by attaching to each individual its remaining lifetime.
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In this work we will Markovianize the process {X(t), t ≥ 0} by means of the ages of particles.

This is done by considering a population in R × Rd, where the first component t represents the

age, and the second component z, the position of an individual δ(t,z), (t, z) ∈ R×Rd. With this in

mind, we need to re-formulate our model, and this is done rigorously in section 2.

We need some notations. Recall that the age and position of an individual are described by a

point e = (u, x) ∈ E := R+ × Rd. Let ei = (ui, xi), i = 1, 2, and define

dE(e1, e2) = 1 ∧ |u1 − u2|+ |x1 − x2|,

which is a metric in E making (E, dE) a Polish space. Recall that the (spherically symmetric)

α-stable process is a Markov process {ξt, t ≥ 0} in Rd with infinitesimal generator

∆α := −(−∆)α/2,

where α ∈ (0, 2] and ∆ is the d-dimensional Laplacian. We denote by {T αt , t ≥ 0} and {pαt (., .), t ≥

0} the corresponding semigroup and the transition function, respectively. When there is no danger

of confusion, we shall simply write Tt and pt.

Let p ∈ (d, d + α] be fixed, where α is the index of the stable process. Define the reference

function Φp(x) := (1 + |x|2)−p/2, x ∈ Rd, and let Ĉp := Ĉp(E) be the space of continuous functions

ψ : E → R such that

‖ψ‖ := sup
(u,x)∈E

∣∣∣∣ψ(u, x)
Φp(x)

∣∣∣∣ <∞;

the map

(u, x) 7−→ ψ(u, x)
Φp(x)

,

can be extended continuously to a function over Ė := Ṙ+× Ṙd , where Ṙ+ and Ṙd are the one-point

compactification of R+ and Rd, respectively. The vector space (Ĉp, ‖.‖) is a separable Banach space.

We finish this section by recalling some facts about the so called age-process, as it is described

by Joffe [13]. Let τ be a random variable whose distribution function F is supported on [0,∞)

with F (0) = 0 and F (u) < 1 for all u ∈ [0,∞), and having a continuous density f . Let {τi}∞i=1 be

a sequence of independent copies of τ .

Let {ηt, t ≥ 0} be the stochastic process defined as follows: assume that η0 = u, where u ∈

[0,∞). Then ηt increasses linearly for t ∈ (0, τ1 − u), and jumps to 0 at τ1 − u. Again ηt increases

linearly between (τ1−u, τ1−u+ τ2) (now starting from 0), jumps to 0 at τ1−u+ τ2 and so on. As

we can see, {ηt t ≥ 0} is a renewal proccess, and the random variable ηt represents the age since

the last renewal. The process η is called age-process.
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Now we are going to write down the semigroup S associated to the age-process. Let us define

Fu(v) := P (τ ≤ u+ v | τ > u),

for u, v ∈ [0,∞), and write F̄ (u) := 1− F (u). Let ϕ : R+ → R be a bounded uniformly continuous

function. Then, for t, u ∈ [0,∞)

Stϕ(u) := ϕ(u+ t)
F̄ (u+ t)
F̄ (u)

+
∫ t

0

[
ϕ(t− s)F̄ (t− s)

+
∫ t−s

0
ϕ(t− s− v)F̄ (t− s− v)dU(v)

]
dFu(s), (1)

where U is the renewal function U(v) =
∑∞

i=0 F
∗i(v). If we take ϕ to be a differentiable function,

then we can write down the infinitesimal generator A of the age-proccess by

Aϕ(u) = ϕ′(u) + λ(u)[ϕ(0)− ϕ(u)], (2)

where λ(u) = f(u)/F̄ (u).

2 The Model

We consider the following branching model: assume that a particle living in Rd develops a Marko-

vian migration ξ during its random lifetime τ . When it dies, it procreates a random number ζ of

new particles, where ζ is an integer-valued random variable. This random number represents new

(i.e. zero-aged) particles that are positioned at the same point where the progenitor died. All of

these new particles behave independently in the fashion described above. The migration process

of each particle is characterized by the stable process ξ, described in Section 1. In addition, we

assume that the probability generating function (pgf) of ζ is given by

Φ(s) := Esζ = s+ c(1− s)1+β, (3)

where |s| ≤ 1, β ∈ (0, 1] and c ∈ (0, 1
1+β ]. In particular Eζ = 1, that is, the branching is critical.

When β = 1 and c = 1/2 we get the critical binary branching.

LetM :=M(R+×Rd) denote the space of Radon measures on the Borel sets of R+×Rd, and

let N := N (R+×Rd) ⊂M be the subspace of counting measures. We will denote byMF and NF

the corresponding subsets of finite measures. Our branching population is properly described by a

stochastic process {X̄t : t ≥ 0} taking values in NF . In particular, if X̄t =
∑n

k=1 δ(ηkt ,ξ
k
t ), we have at

time t, n particles where the k-th particle has age ηkt ∈ R+ and position ξkt ∈ Rd. More generally,

X̄t([a, b]×B) is the number of particles at time t in the set B ∈ Rd with ages in the interval [a, b].

The process X̄ is a Markov process.
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3 The Basic Process

In this section we consider the average motion of individuals. Such displacement is described by a

process ξ̃ := {(η(t), ξ(t)) : t ≥ 0} which takes values on R+ × Rd, where the process η represents

the age of the particle and ξ its position on Rd; here ξ is the α-stable Lévy process with α ∈ (0, 2].

We denote by T̃ the semigroup correponding to ξ̃.

Our first goal is to find the infinitesimal generator and an invariant measure for the process ξ̃.

First, we find the infinitesimal generator. The jumps of the process ξ̃ that we are interested in

are when the particle dies, i.e., the jumps of the process η which ocurr at rate λ(u) := f(u)/F̄ (u),

where u ∈ R+ and F̄ (u) := 1− F (u) (See [18], p. 480). This means that, if R is the first jumping

time of η, then

P{R > t+ u|R > u} = e−
∫ t+u
u λ(s)ds, u ≥ 0.

The infinitesimal generator of the process ξ̃, which we will denote by L, is given in the following

proposition.

Proposition 3.1 The process {ξ̃t, t ≥ 0} is a homogeneous Markov process whose infinitesimal

generator L, is given by

Lψ(u, x) =
∂ψ(u, x)
∂u

+ ∆αψ(u, x)− λ(u)[ψ(u, x)− ψ(0, x], (4)

where ψ : R+ × Rd → R is any bounded function such that ψ(., x) ∈ C1
b (R+) for all x ∈ Rd, and

ψ(u, .) ∈ Dom(∆α) for all u ∈ R+.

Proof: We need to find the limit

L(t)ψ(u, x) = lim
h↓0

h−1E
[
ψ(ξ̃t+h)− ψ(u, x)|ξ̃t = (u, x)

]
, for every t ≥ 0.
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For each t ≥ 0 we have that:

h−1E
[
ψ(ξ̃t+h)− ψ(u, x)|ξ̃t = (u, x)

]
= h−1E

[
ψ(ξ̃t+h)|ξ̃t = (u, x)

]
− h−1ψ(u, x)

= h−1

{
e−

∫ u+h
u λ(s)dsT αh ψ(u+ h, .)(x) +

∫ h

0
λ(u+ r)e−

∫ u+r
u λ(s)ds

×
∫

Rd
pαr (x, y)dydrE[ψ(ξ̃t+h) | ξ̃t+r = (0, y)]

}
− h−1ψ(u, x)

=
1
h
e−

∫ u+h
u λ(s)ds [T αh ψ(u+ h, .)(x)− T αh ψ(u, .)(x)]

+
1
h
e−

∫ u+h
u λ(s)ds [T αh ψ(u, .)(x)− ψ(u, .)(x)] +

1
h

(
e−

∫ u+h
u λ(s)ds − 1

)
ψ(u, x)

+
1
h

∫ h

0
λ(u+ r)e−

∫ u+r
u λ(s)dsT αr E[ψ(ξ̃t+h) | ξ̃t+r = (0, .)](x)dr.

Therefore, letting h tend to infinity and applying the strong continuity of T α in the first term

on the last equality, we get (4)./

Remark 3.2 Taking ψ(u, x) ≡ ψ(u) in the preceding proposition yields the expression (2) for the

infinitesimal generator of the age-process.

Now, we will focus on finding an invariant measure for S and with this at hand we obtain an

invarinat measure for T̃ .

Let ψ be a function from R+×Rd to R such that ψ(u, x) = ψ1(u)ψ(x), for each (u, x) ∈ R+×Rd.

Then, for each t ≥ 0, StTtψ(u, x) = Stψ1(u)Ttψ2(x).

In fact,

lim
t↓0

StTtψ(u, x)− f(u, x)
t

= lim
t↓0

Stψ1(u)Ttψ2(x)− ψ1(u)ψ2(x)
t

= lim
t↓0
{Stψ1(u)[Ttψ2(x)− ψ2(x)] + ψ2(x)[Stψ1(u)− ψ1(u)]}

= ψ1(u)∆αψ2(x) + ψ2(x)
(
∂ψ1(u)
∂u

+ λ(u)[ψ1(0)− ψ1(x)]
)

= Lψ(u, x),

where the last expression is obtained using the strong continuity of {St : t ≥ 0} and {Tt : t ≥ 0}.

Similarly, we have that

lim
t↓0

TtStψ(u, x)− ψ(u, x)
t

= Lψ(u, x).

Therefore, by Stone-Weierstrass’ Theorem, for each t ≥ 0 T̃t = StTt in Ĉp.
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Lemma 3.3 The semigroup {St, t ≥ 0} has an invariant measure G∗ which, for any ϕ ∈ C1
b (R+),

is given by ∫ ∞
0

ϕ(u)G∗(du) =
∫ ∞

0

∫ t

0
ϕ(s)dsf(t)dt.

Proof: First, we observe that it is enough to show that∫ ∞
0
Aϕ(u)G∗(du) = 0.

Applying Fubini’s Theorem we have that∫ ∞
0
Aϕ(u)G∗(du) =

∫ ∞
0

∫ t

0

[
ϕ′(u) + λ(u)[ϕ(0)− ϕ(u)]

]
duf(t)dt

=
∫ ∞

0

∫ t

0
ϕ′(u)duf(t)dt+

∫ ∞
0

f(u)
1− F (u)

[ϕ(0)− ϕ(u)]
∫ ∞
u

f(t)dt

=
∫ ∞

0
[ϕ(0)− ϕ(u)]f(u)du+

∫ ∞
0

[ϕ(u)− ϕ(0)]f(u)du

= 0,

where the last equality is because ϕ is bounded. Therefore, G∗ is an invariant measure for S./

Remark 3.4 In the case that the lifetime has finite mean, {St; t ≥ 0} has a unique invariant law

([5] pag. 130),which is denoted by G̃ and is given as follows:∫ ∞
0

ϕ(u)G̃(du) =
1
µ

∫ ∞
0

∫ t

0
ϕ(s)dsf(t)dt,

where µ is the mean of the lifetime.

Notation: If µ is a measure and ψ is a µ-intregrable function, < µ,ψ >:=
∫
fdµ. ∗ will denote

integration with respect to the age component and • denotes integration in the spatial component.

The next proposition shows the existence of an invariant measure for T̃ .

Proposition 3.5 The product measure G∗ × Λ is an invariant measure for {T̃t, t ≥ 0}.

Proof: We know that Λ is an invariant measure for the semigroup {Tt : t ≥ 0}. Then, for ψ ∈ Ĉp

and t ≥ 0 we have, by Lemma 3.3, that

< G∗ × Λ, T̃tψ1(∗)ψ2(•) > = < G∗ × Λ, (StTtψ) (∗, •) >

= < G∗, < Λ, (StTtψ) (∗, •) >>

= < G∗,St < Λ, (Ttψ)(∗, •) >

= < G∗,St(< Λ, ψ(∗, •) >) >

= < G∗, < Λ, ψ(∗, •) >>

= < G∗ × Λ, ψ(∗, •) > .
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Therefore, G∗ × Λ is an invariant measure for the semigroup {T̃t : t ≥ 0}.

4 Age-Dependent Branching Particle System

In this section we will derive the infinitesimal generator for the branching particle system on certain

cylindrical functions. Namely, let ψ be a function from R+×Rd to (0, 1] with compact support and

such that ψ ∈ Dom(L). Given ν ∈M define

Gψ(ν) := exp < ν, logψ > .

The infinitesimal genertor of {X̄t; t ≥ 0}, evaluated at the function Gψ(ν), is defined as follows:

GGψ(δ(u,x)) := lim
t→0

t−1E
[
Gψ(X̄t)−Gψ(δ(u,x)) | X̄0 = δ(u,x)

]
.

We note that, due to the independence assumptions between branching mechanism and diffusion,

L can be expresed as

LGψ(ν) = BGψ(ν) +DGψ(ν),

where B corresponds to the branching part and D to the diffusion part.

Firstly, we evaluate the branching part, this is given by

BGψ(ν) = < ν, λ(∗, .)
∞∑
k=0

pk
[
Gψ(ν − δ(∗,.) + kδ(0,.))−Gψ(ν)

]
>

= < ν, λ(∗)
∞∑
k=0

pk

[
ψk(0, .)
ψ(∗, .)

− 1
]
>

= Gψ(ν) < ν, λ(∗)Φ(ψ(0, .))− ψ(∗, .)
ψ(∗, .)

> . (5)

Now, we want to see what the diffusion part is. Let τ∗ be the time of the first branching and

assuming that X̄0 =
∑n

k=1 δ(uk,xk) we get that

E[Gψ(X̄h) | X̄0, τ∗ > h]P (τ∗ > h | τ1 > u1, · · · , τn > un)

=
n∑
k=1

e
−

∫ uk+h
uk

λ(r)drThφ(uk + h, xk)
∏

j=1,j 6=k
e
−

∫ uj+h
uj

λ(r)drThφ(uj + h, xj).

Therefore, by independence between the particles we have that

E[Gψ(X̄h)−Gψ(X̄0) | X̄0] =
n∏
k=1

e
−

∫ uk+h
uk

λ(r)drThφ(uk + h, xk),
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hence,

DGψ(X̄0) := lim
h↓0

h−1E[Gψ(X̄h)−Gψ(X̄0) | X̄0]

= lim
h↓0

h−1

[
n∏
k=1

e
−

∫ uk+h
uk

λ(r)drThψ(uk + h, xk)−
n∏
k=1

Thψ(uk, xk)

]

= lim
h↓0

h−1

[
n∏
k=1

e
−

∫ uk+h
uk

λ(r)drThψ(uk + h, xk)−
n∏
k=1

e
−

∫ uk+h
uk

λ(r)dr
φ(uk + h, xk)

+
n∏
k=1

e
−

∫ uk+h
uk

λ(r)dr
ψ(uk + h, xk)−

n∏
k=1

e
−

∫ uk+h
uk

λ(r)dr
ψ(uk, xk)

+
n∏
k=1

e
−

∫ uk+h
uk

λ(r)dr
ψ(uk, xk)−

n∏
k=1

ψ(uk, xk)

]

=
n∑
k=1

[
∆αψ(uk, xk) +

∂

∂u
ψ(uk, xk)− λ(uk)ψ(uk, xk)

] n∏
j=1,j 6=k

ψ(uj , xj). (6)

We will prove the last equality only for n = 2, for general n the calculations are similar but

more involved.

Take n = 2 and denote by (I), (II) and (III) the first, second and third term, rescpectively, on

the third equality.

Note that, by applaying the chain rule to the third term we get that

(III) = −
n∑
k=0

λ(uk)
n∏

j=1,j 6=k
ψ(uj , xj).

For the second term,

(II) = lim
h↓0

[
2∏

k=1

e
−

∫ uk+h
uk

λ(r)dr
ψ(uk + h, xk)−

2∏
k=1

e
−

∫ uk+h
uk

λ(r)dr
ψ(uk, xk)

]

= lim
h↓0

h−1

{
e
−

∫ u1+h
u1

λ(r)dr[ψ(u1 + h, x1)− ψ(u1, x1)]e−
∫ u2+h
u2

λ(r)dr
ψ(u2, x2)

+ e
−

∫ u2+h
u2

λ(r)dr[ψ(u2 + h, x2)− ψ(u2, x2)]e−
∫ u1+h
u1

λ(r)dr
ψ(u1, x1)

}
= ψ(u2, x2)

∂

∂u
ψ(u1, x1) + ψ(u1, x1)

∂

∂u
ψ(u2, x2).
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Finally, we evaluate the first term

(I) = lim
h↓0

h−1

[
2∏

k=1

e
−

∫ uk+h
uk

λ(r)drThψ(uk + h, xk)−
2∏

k=1

e
−

∫ uk+h
uk

λ(r)dr
φ(uk + h, xk)

]

= lim
h↓0

h−1

{
e
−

∫ u1+h
u1

λ(r)dr[Thψ(u1 + h, x1)− ψ(u1, x1)]e−
∫ u2+h
u2

λ(r)drThψ(u2, x2)

e
−

∫ u2+h
u2

λ(r)dr[Thψ(u2 + h, x2)− ψ(u2, x2)]e−
∫ u1+h
u1

λ(r)drThψ(u1, x1)
}

= ψ(u2, x2)∆αψ(u1, x1) + ψ(u1, x1)∆αψ(u2, x2).

Therefore, by (I),(II) and (III)we have shown (6) for n = 2.

Note that, (6) can be written as

DGψ(ν) = Gψ(ν) < ν,
∆αψ(∗, .) + ∂

∂∗ψ(∗, .)− λ(∗)ψ(∗, .)
ψ(∗, .)

>, (7)

hence, adding (5) and (7) we get that

GGψ(ν) = Gψ(ν) < ν,
Lψ(∗, .) + λ(∗)[Φ(ψ(0, .))− ψ(0, .)]

ψ(∗, .)
> . (8)

Now, we summarize the above discussion in the following proposition.

Proposition 4.1 Let {X̄t, t ≥ 0} be the branching particle system. Then for each ψ ∈ Dom(L)

such that 0 < ‖ψ‖ ≤ 1 and ψ > 0, the process

Mt := e<X̄t,logψ> −
∫ t

0
e<X̄s,logψ> < X̄s,

Lψ(∗, •) + λ(∗)[Φ(ψ(0, •))− ψ(0, •)]
ψ(∗, •)

> ds, (9)

is a martingale.

5 Occupation Time

Given an M-valued process {Yt, t ≥ 0} and ψ : R+ × Rd → R+ a measurable compact supported

function we define the occupation time process {Jt, t ≥ 0} as follows

J ψt :=
∫ t

0
< Ys, ψ > ds.

In this section we will study the occupation time of the process X̄. Our goal is to show that

the occupation time satisfies an ergodic theorem (a kind of strong law of large numbers).

Occupation time has been extensively studied in the context of branching particle systems

where the particles’ lifetime are exponentialy distributed, (see [4],[15],[1],[2]). Also, [11] and [8]
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studied it in the context of Dawson-Watanabe supperprocess, i.e., measure-valued processes which

are diffusion limits of branching particle systems with exponential life times.

Cox and Griffeath [4] proved the following central limit-type theromen for the occupation time

of the critical binary branching Brownian motion, as t→∞

J 1A
t − < 1A,Λ > t

bt

a.s.⇒ N(0, σ2),

where bt is a function that depends on the dimension and also σ2 changes with the dimension.

Méléard and Roelly [15] proved that the braching particle system with exponential lifetimes and

α-stable migration on Rd satiafies an ergodic result. Namely, as t goes to infinity

t−1 < Jt, ψ >
a.s.→< Λ, ψ > .

Bojdecki et. al. ([1],[2]) studied the fluctuations of the reescaled occupation time proccess of

this branching system. They have obtained different new process for example fractional Brownian

motion and sub-fractional Brownian motion.

Iscoe [11] has several central limit-type therems for the occupation time in the context of

supperprocesses. See also, Fleischmann and Gärtner [8] for more results on this direction.

6 An Ergodic Result

This Section is concerned with the extension of the ergodic result of [15] to the general case:

particles’ lifetime is any distribution function with continuous density. In fact, we shall show the

following theorem.

Theorem 6.1 Let d > α, and let f ∈ Ĉp be such that f(u, x) = f1(u)f2(x). Then, as t→∞

< Jt, f >
t

c.s→< G∗ × Λ, f > .

To prove this theroem we will need some preliminaries result. The following proposition gives

the joint Laplace functional of the branching system and its occupation time.

Proposition 6.2 Let φ, ψ be a nonnegative, measurable compact supported functions from [0,∞)×

Rd to R+. Then, the joint Laplace functional of the branching particle system and its occupation

time is given by

E
[
e−<X̄t,ψ>−

∫ t
0<X̄s,φ>ds

]
= e−<G

∗×Λ,V ψt φ>,
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where V ψ
t φ satisfies

∂

∂t
V ψ
t φ(u, x) = LV ψ

t φ(u, x)−λ(u)[Φ(1−V ψ
t φ(0, x))−(1−V ψ

t φ(0, x))]+φ(u, x)(1−V ψ
t φ(u, x)), (10)

V0ψφ(u, x) = 1− e−ψ(u,x).

Proof: First we note that, we can extend Proposition (4.1) to a time-dependent function ψ. For

example, Wψ
T−tφ for t ∈ [0, T ] with T > 0 fixed, where Wψ

t φ is the solution of the following partial

differential equation

∂

∂t
Wψ
t φ(u, x) = LWψ

t φ(u, x) + λ(u)[Φ(Wψ
t φ(0, x))−Wψ

t φ(0, x)]− f(u, x)W f
t g(u, x),

with initial condition Wψ
0 φ(u, x) = e−ψ(u,x).

We see that, for T > 0 fixed, (9) can be written as

M ′t := e<X̄t,logWψ
T−tφ> −

∫ t

0
< X̄s, φ > e<X̄s,logWψ

T−sφ>ds,

hence M ′ is a martingale on [0, T ].

Now, applying Corollary 2.3.3 of [6] to M ′ we get that

M̃t := exp
(
< X̄t, logWψ

T−tφ > −
∫ t

0
< X̄s, φ > ds

)
,

is a martingale on [0, T ].

Then, taking expectations and ussing the martingale property of M̃ we have that

E
[
e−<X̄t,ψ>−

∫ t
0<X̄t,φ>ds

]
= E

[
e<X̄0,logWψ

t φ>
]

= e−<G
∗×Λ,1−Wψ

t φ>,

in the last idnetity we are ussing the fact that the initial population is Poissonian with intensity

measure G∗ × Λ. Finally, to finish the proof denife V ψ
t φ := 1−Wψ

t φ./

The next Lemma gives the mean of the occupation time.

Lemma 6.3 Let φ : R+ × Rd → R+ be a measurable function with compact support. Then, for

each t ≥ 0

EG∗×ΛJ φt =< φ,G∗ × Λ > t.

Proof: Given k ≥ 0 define

Lt(kφ) = E
[
e−k

∫ t
0<X̄s,φ>ds

]
= e−<G

∗×Λ,Vt(kφ)>, (11)
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where Vt(kφ) satisfies (10) with φ substituted by kφ and ψ ≡ 0.

Now, we note that

EG∗×ΛJ φt = − d

dk
EG∗×Λ exp−J kφt |k=0+

= <
d

dk
V 0
t (kφ), G∗ × Λ > exp− < V 0

t (kφ), G∗ × Λ > |k=0+ .

Then, defining V̇tφ := d
dθV

0
t (θφ) |k=0+ and recalling that V 0

t (0φ) = 0, we obtain

∂
∂t V̇tφ(u, x) = LV̇tφ(u, x) + φ(u, x)

V̇0φ(u, x) = 0.

Therefore,

V̇tφ(u, x) =
∫ t

0
T̃t−sφ(u, x)ds,

consecuently

EG∗×ΛJ φt = < V̇tφ,G
∗ × Λ >

= <

∫ t

0
T̃t−sφds,G

∗ × Λ >

=
∫ t

0
< φ,G∗ × Λ > ds

= < φ,G∗ × Λ > t./

The next Lemma gives a bound for the variance of the occupation time.

Lemma 6.4 Let φ : R+ × Rd → R+ be a measurable function with compact support such that

φ(u, x) = φ1(u)φ2(x) for all (u, x) ∈ R+ × Rd. Then, for each t ≥ 0

VarJ φt ≤ Φ′′(1)K2
φ1
< G∗, λ > Cte(φ2)(t+ t3−d/α)

+2Kφ1 < G∗, φ1 > Cte(φ2)(t+ t2−d/α). (12)

Proof: Deriving Vt(kφ) with respect to k (under the assumption that β = 1) and ussing equation

(10), we have that

∂2

∂t∂K
Vt(kφ)(u, x) = A

∂

∂K
Vt(kφ)(u, x) + φ(u, x)(1− Vt(kφ)(0, x))− kφ(u, x)

∂

∂K
Vt(kφ)(u, x)

−λ(u)
[
−Φ′(1− Vt(kφ)(0, x))

∂

∂K
Vt(kφ)(0, x) +

∂

∂K
Vt(kφ)(0, x)

]

12



 
 

and

∂3

∂t∂K2
Vt(kφ)(u, x) = A

∂2

∂K2
Vt(kφ)(u, x)− 2φ(u, x)

∂

∂K
Vt(kφ)(u, x)− kφ(u, x)

∂2

∂K2
Vt(kφ)(u, x)

−λ(u)

[
Φ′′ (1− Vt(kφ)(0, x))

(
∂

∂K
Vt(kφ)(u, x)

)2

−Φ′(1− Vt(kφ)(0, x))
∂2

∂K2
Vt(kφ)(0, x) +

∂2

∂K2
Vt(kφ)(0, x)

]
Letting V̈tφ = ∂2

∂K2Vt(kφ)|k=0+ we get that

∂

∂t
V̈tφ(u, x) = AV̈tφ(u, x)− λ(u)Φ′′(1)

(
V̇tφ(0, x)

)2
− 2φ(u, x)V̈tφ(u, x). (13)

From Lemmma (6.3) and (13) we obtain

V̈tφ(u, x) =
∫ t

0
T̃s

[
−λ(u)Φ′′(1)

(∫ s

0
T̃rφ(u, x)dr

)2

− 2φ(u, x)
∫ s

0
T̃rφ(u, x)dr

]
ds.

Note that, Var < Tt, φ >= − < G∗ × Λ, V̈tφ(∗, •) >. Then,

Var < Jt, φ > = < G∗ × Λ,
∫ t

0
T̃s

[
λ(∗)Φ′′(1)

(∫ s

0
T̃rφ(∗, •)dr

)2

+2φ(∗, •)
∫ s

0
T̃rφ(∗, •)dr

]
ds >

=
∫ t

0
< G∗ × Λ, λ(∗)φ′′(1)

(∫ s

0
T̃rφ(∗, •)dr

)2

> ds

+2
∫ t

0
< G∗ × Λ, φ(∗, •)

∫ s

0
T̃rφ(∗, •)dr > ds

Let (A) and (B) be the first and second term, respectively, in the last equation. Then for

φ(u, x) = φ1(x)φ2(x) and t ≥ 0, T̃tφ(u, x) = Stφ1(u)Ttφ2(x).

Note that < G∗, λ ><∞. In fact, by Fubini’s Theorem we have that

< G∗, λ > =
∫ ∞

0

(∫ t

0
λ(s)ds

)
f(t)dt

=
∫ ∞

0

f(s)
1− F (s)

(∫ ∞
s

f(t)dt
)
ds

= 1.
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Afterward,

(A) =
∫ t

0
< G∗ × Λ, λ(∗)Φ′′(1)

(∫ s

0
Srφ1(∗)Trφ2(•)dr

)2

> ds

≤
∫ t

0
< G∗ × Λ, λ(∗)Φ′′(1)K2

φ1

(∫ s

0
Trφ2(•)dr

)2

> ds

=
∫ t

0
< G∗, λ(∗)Φ′′(1)K2

φ1
>< Λ,

(∫ s

0
Trφ2(•)dr

)2

> ds

= Φ′′(1)K2
φ1
< G∗, λ(∗) >

∫ t

0
< Λ,

(∫ s

0
Trφ2(•)dr

)2

> ds,

where Kφ1 is such that for all t ≥ 0, ‖Stφ1‖ ≤ Kφ1 . Also, it can be proven that∫ t

0
< Λ,

(∫ s

0
Trφ2(•)dr

)2

> ds ≤ Cte(φ2)(t+ t3−d/α),

and consecuently,

(A) ≤ Φ′′(1)K2
φ1
< G∗, λ > Cte(φ2)(t+ t3−d/α).

Similarly, for φ1 such that < G∗, φ1 ><∞ we obtain that

(B) = 2
∫ t

0
< G∗ × Λ, φ1(∗)φ2(•)

∫ s

0
Srφ1(∗)Trφ2(•)dr > ds

≤ 2
∫ t

0
< G∗ × Λ, φ1(∗)φ2(•)Kφ1

∫ s

0
Trφ2(•)dr > ds

= 2Kφ1 < G∗, φ1(∗) >
∫ t

0
< Λ, φ2(•)

∫ s

0
Trφ2(•)dr > ds,

where ∫ t

0
< Λ, φ2(•)

∫ s

0
Trφ2(•)dr > ds ≤ Cte(φ2)(t+ t2−d/α),

hence,

(B) ≤ 2Kφ1 < G∗, φ1 > Cte(φ)(t+ t2−d/α).

Finally, adding the bounds for (A) and (B) we get the result./

Proof of Theorem 6.1. Applying Chebyshev’s inequality we have that for each t ≥ 0 and

ε > 0

P

{
| < Jt, φ > − < G∗ × Λ, φ > |

t
> ε

}
≤ 1
t2ε2

V ar < Jt, φ > .

14



 
 

Let a ∈ (1,∞) and kn = an, for n ∈ N. Then, by Lemma 6.4

∞∑
n=1

P

{
| < Jkn , φ > − < G∗ × Λ, φ > |

kn
> ε

}

≤ 1
ε2

∞∑
n=1

V ar < Jkn , φ >

≤ 1
ε2

{
Φ′′(1)K2

φ1
< G∗, λ > Cte(φ)

∞∑
n=1

(kn + k3−d/α
n )/k2

n

+ 2Kφ1 < G∗, φ1 > Cte(φ)
∞∑
n=1

(kn + k
2−d/α
2 )/k2

n

}

≤ 1
ε2

{
Φ′′(1)K2

φ1
< G∗, λ > Cte(φ)

∞∑
n=1

(a−n + a(1−d/α)n)

+ 2Kφ1 < G∗, φ1 > Cte(φ)
∞∑
n=1

(a−n + a(−d/α)n

}
< ∞.

Hence, by Borel-Cantelli’s Lemma

1
kn

< Jkn , φ >
c.s.→< G∗ × Λ, φ >,

as n→∞.

Now, let t ≥ 1 be fixed, then there exists n ∈ N such that an ≤ t ≤ an+1 and

< Jan , φ >
an+1

≤ < Jt, φ >
t

≤ < Jan+1 , φ >

an
,

then,
< G∗ × Λ, φ >

a
≤ lim inf

t→∞

< Jt, φ >
t

≤ lim sup
t→∞

< Jt, φ >
t

≤< G∗ × Λ, φ > a,

the last inequalities are true for all a > 1. Letting a→ 1 we get the result.

Remark 6.5 If the lifetime has an exponential distribution with mean λ−1, φ1 ≡ 1 and G∗ changes

to G̃ then Theorem 6.1 reduces to Theorem 4 of [15].
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